Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic equation
نویسندگان
چکیده
In this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and Volberg of the well-posedness of critically dissipative 2D quasi-geostrophic equation to the super-critical case. We prove that if the initial value satisfies ‖∇θ0‖1−2s L∞ ‖θ0‖ L∞ < cs for some small number cs > 0, where s is the power of the fractional Laplacian, then no finite time singularity will occur for the super-critically dissipative 2D quasi-geostrophic equation. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Higher Regularity for the Critical and Super-critical Dissipative Quasi-geostrophic Equations
We study the critical and super-critical dissipative quasi-geostrophic equations in R or T. Higher regularity of mild solutions with arbitrary initial data in Ḣ is proved. As a corollary, we obtain a global existence result for the critical 2D quasigeostrophic equations with periodic Ḣ data. Some decay in time estimates are also provided.
متن کاملOn the Global Solutions of the Super-critical 2d Quasi-geostrophic Equation in Besov Spaces
In this paper we study the super-critical 2D dissipative quasi-geostrophic equation. We obtain some regularization effects allowing us to prove global well-posedness result for small initial data lying in critical Besov spaces constructed over Lebesgue spaces L, with p ∈ [1,∞]. Local results for arbitrary initial data are also given.
متن کاملGlobal Well-posedness for the Critical 2d Dissipative Quasi-geostrophic Equation
We give an elementary proof of the global well-posedness for the critical 2D dissipative quasi-geostrophic equation. The argument is based on a non-local maximum principle involving appropriate moduli of continuity.
متن کاملGlobal Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation
In this paper, we consider the modified quasi-geostrophic equation ∂tθ + (u · ∇) θ + κΛθ = 0 u = Λα−1R⊥θ. with κ > 0, α ∈ (0, 1] and θ0 ∈ L2(R2). We remark that the extra Λα−1 is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence an...
متن کاملGlobal Regularity for the Critical Dispersive Dissipative Surface Quasi-geostrophic Equation
We consider surface quasi-geostrophic equation with dispersive forcing and critical dissipation. We prove global existence of smooth solutions given sufficiently smooth initial data. This is done using a maximum principle for the solutions involving conservation of a certain family of moduli of continuity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006